



# 中国工程建设标准化协会标准

Standard of China Association for Engineering Construction
Standardization

# 高速公路智慧视频监测系统设计指南

Highway Intelligent Video Monitoring System Design Guide



# 中国工程建设标准化协会 发布 Issued by China Association for Engineering Construction Standardization

# 中国工程建设标准化协会标准

# 高速公路智慧视频监测系统设计指南

Highway Intelligent Video Monitoring System Design Guide



主编单位:交通运输部公路科学研究所(院)

批准部门: 中国工程建设标准化协会

实施日期: 202X 年 XX 月 XX 日

## 前言

根据中国工程建设标准化协会《关于印发<2020 年第二批协会标准制订、修订计划>的通知》(建标协字[2020]23 号)的要求,由交通运输部公路科学研究所承担《高速公路智慧视频监测系统设计指南》(以下简称"本指南")的制订工作。

本指南包括7部分:总则、术语、总体要求、监测功能、公路应用、通信网络要求及附录。

本指南是基于技术先进性与注重灵活性原则编制,适用于高速公路视频智慧应用建设条件。对于某些特定专项应用条件,使用本标准相关条文时,应对适用性及有效性进行验证。

本标准由中国工程建设标准化协会公路分会负责归口管理,由交通运输部公路科学研究所负责具体技术内容的解释,在执行过程中如有意见或建议,请函告本标准日常管理组,中国工程建设标准化协会公路分会(地址:北京市海淀区西土城路8号;邮编:100088;电话:010-62079839;传真:010-62079983;电子邮箱:snc@rioh.cn;或qy@itsc.cn),或以便修订时参考。

主编单位: 交通运输部公路科学研究院(所)

参编单位:贵州省公路开发有限责任公司

中国公路工程咨询集团有限公司

北京点石通科技有限公司

主 编:

主要参编:

主 审:

参审人员:

# 目 录

| 1 | 总则     |             |    |
|---|--------|-------------|----|
| 2 | 术语和符号  |             |    |
|   | 2.1    | 术语          | 1  |
|   | 2.2    | 缩略语         | 1  |
| 3 | 监测系统组成 |             |    |
|   | 3.1    | 逻辑架构        | 1  |
|   | 3.2    | 外场监测点设备     | 2  |
|   | 3.3    | 路段视频监测平台    | 3  |
|   | 3.4    | 省(部)云平台     | 4  |
|   | 3.5    | 视频传输        | 4  |
| 4 | 监测功能   |             |    |
|   | 4.1    | 功能架构        | 4  |
|   | 4.2    | 交通运行状态感知    | 4  |
|   | 4.3    | 交通事件感知      |    |
|   | 4.4    | 公路气象感知      | 5  |
|   | 4.5    | 设施状态感知      | 5  |
|   | 4.6    | 车辆精准感知      | 6  |
| 5 | 外场监测点  |             |    |
|   | 5.1    | 路段          |    |
|   | 5.2    | 桥梁          | 7  |
|   | 5.3    | 隧道<br>互通立交区 | 8  |
|   | 5.4    | 互通立交区       | 9  |
|   | 5.5    | 边坡          | 9  |
|   | 5.6    | 服务区         | 10 |
|   | 5.7    | 避险车道        | 11 |
| 6 | 平台功能   |             |    |
|   | 6.1    | 管理功能        |    |
|   | 6.2    | 业务功能        |    |
| 7 | 通信网络要求 |             |    |
|   | 7.1    | 图像传输网带宽要求   |    |
|   | 7.2    | 视频图像质量要求    |    |
|   | 7.3    | 网络信息安全      | 13 |

#### 1 总则

- 1.0.1 为指导和规范我国高速公路智慧视频监测系统的建设,有利于部署和应用视频相关产品,制定本指南。
- 1.0.2 本指南适用于我国高速公路的视频监测系统建设,其他公路视频监测系统可参照执行。
- 1.0.3 智慧视频监测系统除参照执行本指南外,应符合国家、行业和本省的现行相关法律、规范、标准等规定。

## 2 术语和符号

#### 2.1 术语

#### 2.1.1 视频监测系统 Video monitoring system

指具有视频图像采集、网络传输、视频录像、存储、回看,以及智能分析、 综合管理等功能的设备组成。

# 2.1.2 图像智能分析设备 Video Intelligent analysis equipment

能接入多通道、多协议 IPC 摄像机采集的视频图像,进行人工智能(AI)处理,能实现交通运行状态检测、交通事件检测等多种功能,并将检测结果输出至指定网络中心的服务器、

#### 2.2 缩略语

VPN: 虚拟专用网络(Virtual Private Network)

# 3 监测系统组成

#### 3.1 逻辑架构

高速公路视频监测系统应包括外场终端监测点设备、路段视频管理平台、省级视频管理平台等,见图 3-1。

公路路段作为初级视频汇聚点,应通过布署视频上云网关实现与省级视频云

#### 平台、部级视频云平台联网共享。

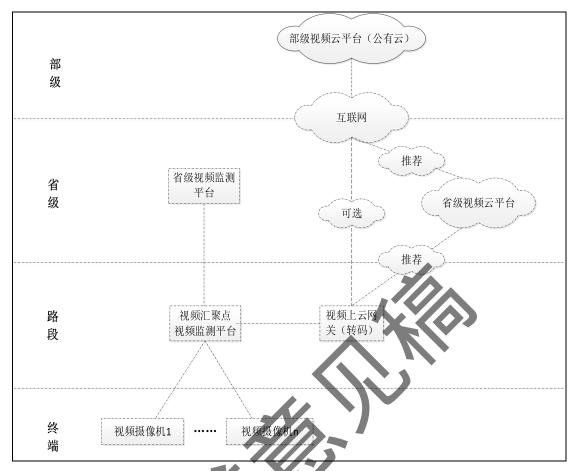



图 3-1 高速公路视频监测系统组成

# 3.2 终端监测点设备

根据应用需求,分为前端不带图像智能分析功能的高清摄像机,和前端带图像智能分析功能的高清摄像机。设备应用示意图见 3-2、3-3。

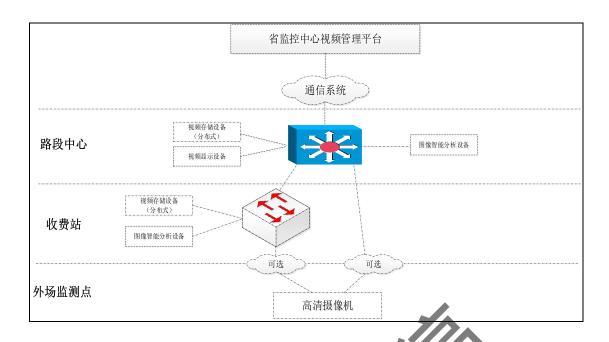



图 3-2 外场终端监测点设备应用示意(后端图像智能分析)

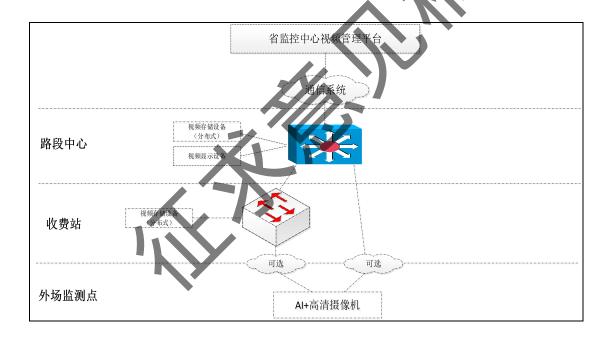



图 3-3 外场终端监测点设备应用示意(AI+高清摄像机)

## 3.3 路段视频监测平台

路段中心部署的高速公路视频监测平台,能够汇聚公路沿线视频图像信息,并通过视频分析实现交通运行状态感知、交通事件感知、公路气象感知、设备状态感知、车辆精准监控感知等功能。

# 3.4 省(部)云平台

省(部)级云平台相关功能和技术要求,参见《全国高速公路视频云联网技术要求》(交办公路函【2019】1659号)

#### 3.5 视频传输

现场视频设备与路段监控中心间的视频传输采用高速公路通信专网,路段中心或省监控中心采用视频上云网关和云平台之间建立云端 VPN 隧道,通过互联网为社会公众提供实时视频服务。

最低带宽要求见《全国高速公路视频云联网技术要求

#### 4 监测功能

#### 4.1 功能架构

高速公路视频监测系统应能实现表 4-1 中功能。 表 4-1 视频监测系统功能

| 序号 | 类别       | 感知能力                              |
|----|----------|-----------------------------------|
| 1  | 基础能力     | 图像显示                              |
| 2  | 自诊断      | 设备自检                              |
| 3  | 交通运行状态感知 | 平均速度、断面交通量、拥挤度、占有率(排队长<br>度)等     |
| 4  | 交通事件感知   | 行人、拥堵、逆行、倒车、停车、抛洒物、非机动<br>车事件、烟火等 |
| 5  | 公路气象感知   | 团雾检测                              |
| 6  | 设施状态感知   | 路面、构造物、边坡等结构                      |
| 7  | 车辆精准感知   | 车辆特征信息识别、测速                       |

#### 4.2 交通运行状态感知

- 4.2.1 视频监测系统应具备对平均速度、断面交通量、拥挤度、占有率(排队长度)等交通流检测功能。指标参考《交通信息采集 视频车辆检测器》(GB/T 24726)。
- 4.2.2 当路面照度大于 50 lx, 能见度不小于 5500 m 时, 应能监测公路断面车流

量、车辆平均速度,可分车道精细化计算车道占有率,其准确度大于90%。

4.2.3 非理想光照和能见度条件下,能监测公路断面车流量、车辆平均速度、车道占有率,其准确度大于80%。

#### 4.3 交通事件感知

- 4.3.1 视频监测系统应具备对主线、隧道内出现的行人、拥堵、逆行、倒车、停车、 抛洒物、非机动车、烟雾、火情等事件进行检测、识别、预警的功能。指标参考 《视频交通事件检测器》(GB/T 28789-2012)。
- 4.3.2 道路光照度小于 50lx 条件下,以及雨天、雪天、雾霾天不良能见度条件下,实现交通拥堵事件、停车事件检测,准确率大于 95%,漏报率不大于 2%,检测的每路视频 24h 虚报次数不超过一次;
- 4.3.3 道路辅助照明光照度不小于 50lx 条件下,实现停车事件、存入事件、拥堵事件、逆行事件、抛洒物、机动车驶离、撞车追尾事件检测,准确率不小于 97%,事件漏报率不大于 2%,检测的每路视频 24h 虚报次数不超过一次;
- 4.3.4 隧道火情检测准确率大于80%,漏报率不大于2%。

#### 4.4 公路气象感知

- 4.4.1 视频监测系统能对视频图像覆盖范围内出现的团雾进行识别,造成道路能见度范围在 100 米以内进行提示预警。
- 4.4.2 能实现道路团雾检测,准确率应大于80%,漏报率不大于2%。

#### 4.5 设施状态感知

#### 4.5.1 桥梁

视频监测系统能对桥梁外廓形状发生变化识别。

#### 4.5.2 路面

视频监测系统能对路面大于1平米面积的坑槽进行识别。

#### 4.5.3 边坡

视频监测系统应识别:

- 边坡表面显著突发事件,如落石、坍塌、坍滑、变形、流水等,并提示 预警。
- 2) 视频监测系统应能测量边坡范围内指定结构点的位移,当超出设定阈值时提示预警。

#### 4.6 车辆精准感知

视频监测系统宜具备对路段车辆进行车牌识别、车身颜色识别、车标识别、车型识别、测速等精准识别功能。指标参考《机动车号牌图像自动识别技术规范》(GA/T 833-2009)。

#### 5 外场监测点

#### 5.1 路段

#### 5.1.1 监测内容

在高速公路一般路段上,视频监测系统应能实现第 4.2、4.3、4.4、4.5.2、4.5.3、4.6 中的交通运行状态感知、交通事件感知、公路气象感知、设施状态感知等。

#### 5.1.2 布设原则

全程监测路段宜采用 1000 m-2000 m 的布设间距; 局部路段应根据路线条件、管理需求适当加密。

#### 5.1.3 设备选取

主线路段每个监控点位宜采用遥控摄像机+固定摄像机的组合方式。固定摄 像机的图像用于智能分析,遥控摄像机可对指定位置进行放大显示。

#### 5.1.4 设置位置

- 1) 宜采用立杆设置在中央分隔带、路侧或者已有门架,安装高度距路面 12 米。
- 2) 安装点位选择应避免道路转弯、可变信息标志、交安标志、建筑物等因 素对摄像机监控视野的影响。

3) 路段安装有全封闭声屏障时,设置于声屏障立柱上或吊装于声屏障横梁上。考虑声屏障净空对摄像机视角的影响,可适当增设。

#### 5.2 桥梁

#### 5.2.1 监测内容

桥梁视频监测应实现第 4.2、4.3、4.4、4.5.1 中的交通运行状态感知、交通事件感知、公路气象感知、设施状态感知等。

#### 5.2.2 布设密度

- 1)1公里以下重要桥梁宜在桥头设置监控摄像机;
- 2) 特大桥宜按照 500 米—1000 米间距设置监控摄像机
- 3)在斜拉桥或悬索桥的每一座索塔上宜设置监控摄像机
- 4) 在通航孔桥主副航道的两侧桥墩处宜设置监控摄像机。

#### 5.2.3 设备选取

- 1)桥梁主线路段(含桥头)每个监控点位宜采用遥控摄像机+固定摄像机的组合方式。固定摄像机的图像用于智能分析,遥控摄像机可对指定位置进行放大显示:
  - 2) 索塔上监控点位宜采用长焦距遥控摄像机;
  - 3) 用于监视航道的摄像机宜采用球形摄像机。

#### 5.2.4 设置位置

- 1) 桥梁主线摄像机宜采用立杆设置在中央分隔带、路侧或者已有门架。如 桥梁上设置了照明系统,监控摄像机可固定在照明灯杆上,安装高度宜距路面 8 米;
  - 2) 索塔摄像机应采用金属支架固定在索塔横梁或顶部适当位置;
  - 3) 航道监视摄像机宜固定在桥梁外侧或桥墩上。

#### 5.3 隧道

#### 5.3.1 监测内容

隧道视频监测应实现第 4.2、4.3、4.6 中的交通运行状态感知、交通事件感知、车辆精准感知等。

#### 5.3.2 布设原则

- 1) 在隧道洞口应设置监控摄像机;
- 2) 在隧道洞内主线应按照不大于 150 米的间距连续设置监控摄像机, 如果单洞车道数大于 2 条或者在曲线路段, 应根据实际情况适当减小布设间距;
- 3) 在隧道内紧急停车带、车行横洞、人行横洞处应设置监控摄像机;
- 4) 在隧道变电所内应设置监控摄像机。
- 5) 在特长隧道出入口宜设置抓拍摄像机,实现车辆精准感知。

#### 5.3.3 设备选取

- 1) 隧道洞口摄像机的宜采用遥控摄像机;
- 2) 隧道主线宜采用固定摄像机;
- 3) 隧道内紧急停车带、车行横洞、人行横洞处宜采用球形摄像机;
- 4) 隧道变电所宜采用半球形摄像机;
- 5) 抓拍摄像机宜采用高像素(大于200万) 固定摄像机。

#### 5.3.4 设置位置

- 1) 隧道洞口摄像机宜采用立杆设置在中央分隔带、路侧或者已有门架。
- 2) 隧道洞内摄像机宜固定在隧道两侧内壁上,沿车行方向安装,距路面高 4~5 米;
  - 3) 隧道内紧急停车带、车行横洞、人行横洞处摄像机宜固定在隧道侧壁上。
  - 4) 隧道变电所摄像机宜固定在变电所入口以及室内视野开阔位置。
- 5)抓拍摄像机宜采用门架式结构在隧道出入口附近安装,也可以利用已有门架进行安装。

#### 5.4 互通立交区

#### 5.4.1 监测内容

视频监测应根据设置位置实现第 4.2、4.3、4.4 中的交通运行状态感知、交通事件感知、公路气象感知等。

#### 5.4.2 布设方案

在互通立交分合流区须按监视范围和角度设置 1~2 处视频监控点位。

#### 5.4.3 设备选型

- 1) 摄像机的选取同 5.1.3;
- 2) 大型枢纽互通宜采用全景摄像机。

#### 5.4.4 设置位置

互通摄像机宜采用立杆设置在中央分隔带、路侧,应根据实际情况加长立杆长度。

#### 5.5 边坡

#### 5.5.1 监测内容

应对边坡防护区域的落石、坍塌、坍滑、防护结构错位、流水或表面位移等异常现象进行监测识别。

#### 5.5.2 布设方案

监测点位应布设在待测边坡对侧,监控点位与边坡水平距离不大于40米。

#### 5.5.3 设备选取

边坡监控摄像机需满足以下基本要求:

- 1) 摄像机宜采用高像素(大于200万)固定摄像机。
- 2) 对于连续高边坡路段可以采用2目或4目全景摄象机。

#### 5.5.4 布设位置

- 1) 监测设备宜随路线走向,在护栏侧设杆安装。
- 2) 监测点应与普通路段、桥梁、隧道口等的视频监测点布设统筹考虑。
- 3) 调整设备拍摄方向与拍摄角度,使设备朝向边坡正面进行视频拍摄。

#### 5.6 服务区

#### 5.6.1 监测内容

视频监测应根据设置位置实现第 4.2、4.6 中的交通运行状态感知、车辆精准监控感知等。

#### 5.6.2 布设原则

- 1) 在服务区/停车区场区布设监控点位,对场区车辆情况进行实时监视,并可以统计停车位的占用情况;
- 2) 对危化品停车位布设监控点,监测危化品车辆的停车时长;
- 3) 在服务区/停车区出入口匝道设置监控卡口,对进入服务区的车辆特征信息进行采集,并实时统一服务内车流量情况。
- 4) 在超市、餐厅等入口处设置监控点位,监测客流量情况。

#### 5.6.3 设备选型

- 1) 服务区/停车区场区官采用遥控摄像机或者采用2目或4目全景摄象机。
- 2) 危化品停车位宜采用固定摄像机;
- 3) 服务区/停车区出入口匝道卡口宜采用高像素(大于 200 万)固定摄像机 超市、餐厅等入口处。
- 4) 超市、餐厅等入口处宜设置球形摄像机。

#### 5.6.4 设置位置

1) 场区摄像机宜采用立杆设置在场区适当位置,实现场区监控全覆盖:

- 2) 危化品停车位监控摄像机宜采用立杆设置;
- 3) 卡口摄像机宜采用悬臂结构设置在服务区出入口匝道;
- 4) 客流监测摄像机宜设置在超市、餐厅入口处上方,采用支架固定在墙上。

#### 5.7 避险车道

视频监测应根据设置位置实现第 4.2、4.3 中的交通运行状态感知、交通事件感知等。

#### 5.7.1 布设原则

避险车道处设置一处监控点位,可以对整个避险车道进行监视,通过图像智能分析设备,可判断避险车道内是否有车辆进入。

#### 5.7.2 设备选型

摄像机宜采用固定摄像机,当设置有独立车辆检测器的避险车道宜采用遥控摄像机。

#### 5.7.3 设置位置

宜采用立杆或者悬臂结构设置在避险车道路侧。

## 6 平台功能

- 6.1 管理功能
- 6.1.1 能根据对公路运营需求、养护需求、应急需求等不同监测需求,配置管理需要的监测功能。
- 6.1.2 视频管理平台功能应包括视频管理和云台控制、视频上墙显示、录像存储、视频检索、视频流转发、流媒体发布、用户权限管理和告警联动等功能。

#### 6.2 业务功能

- 6.2.1 视频监测系统能对视频图像进行识别处理,针对交通事件自动报警,并 将检测结果分类存储、自动录像,可根据事件发生类型、路段和时间进 行事件查询。
- 6.2.2 视频监测系统针对摄像机可设置不同的事件检测功能,针对各类事件检测功能可设置不同的检测频率。
- 6.2.3 高速公路智慧视频监测系统应具备监测功能可扩展的能力,为不断完善 公路网运行监测与服务应用提供技术支撑。
- 6.2.4 视频监测系统监测结果,应及时反馈到路段中心监控平台;重点边坡、 桥隧的视频监测系统宜留有通信端口,可在本地接入显示终端。
- 6.2.5 高速公路智慧视频监测系统应具备数据共享、互联互通的功能,可与其 他监测系统的数据融合,提升监测结果的准确性与可靠性。
- 6.2.6 视频监测系统应具备摄像机实时在线、远程访问、视频存储、字符叠加 等视频监控功能。
- 6.2.7 高速公路智慧视频监测系统宜具备设备故障自诊断的功能,可对黑屏、 遮挡、模糊、亮度异常、冻结、噪声、闪烁、滚动条文等图像质量进行 检测,便于高速公路管理部门制定运营养护计划。
- 6.2.8 视频监测系统的检测模型和算法可进行迭代升级。

# 7 通信网络要求

- 7.1 图像传输网带宽要求
- 7.1.1 高速公路视频监测设备的通信网络系统应遵循《高速公路通信技术要求》 (交通运输部 2012 年第 3 号公告)的相关规定进行建设。
- 7.1.2 如果道路里程较长,外场监控图像先上传到就近通信站,再由通信站上传到路段分中心。
- 7.1.3 如果道路里程较短,外场监控设备可直接上传到路段分中心。
- 7.1.4 图像传输网要满足所有图像以高清码流上传的需求
- 7.2 视频图像质量要求
- 7.2.1 视频分辨率应不低于 1080P(即画面大小 1920 x1080),每秒不低于 25 帧。
- 7.2.2 视频图像应确保实时传送,视频码率不低于 4Mbps, 且图像清晰。
- 7.2.3 视频图像应叠加公路名称、摄像机桩号或位置名称、方向、时间等信息。
- 7.3 网络信息安全
- 7.3.1 如路段分中心视频监测平台有外网调用需求,应在系统区域边界部署防 火墙或其他访问控制设备,设置访问控制策略,实现边界协议过滤。
- 7.3.2 网络设备防护应具备鉴别登录用户身份、限制网络设备管理员登录地址、处理登陆失败、防止网络远程管理被窃听等功能。